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Abstract—Natural convection of gases in a horizontal annulus, where the inner cylinder is heated by the
application of a constant heat flux and the outer cylinder is isothermally cooled, is studied numerically.
Detailed results of temperature, velocity and heat transfer are presented for a wide range of Rayleigh
numbers extending from conduction to the convection-dominated steady flow regime, and diameter ratios
of 1.2-10. A crescent-shaped eddy dominates for the small diameter ratio and a kidney-shaped flow pattern
appears for the large diameter ratio as observed by previous investigators in their flow visualization studies.
The inner wall temperature is a function of diameter ratio and Rayleigh number. An increase in Rayleigh
number based on the same temperature difference for the inner wall boundary condition of constant heat
flux or constant temperature increases the heat transfer rate ; however, the increase is larger for the constant
heat flux case. At large diameter ratios (x > 10), the heat transfer rates are the same for both types of
heating, and a single cylinder in an infinite atmosphere gives nearly the same results.

1. INTRODUCTION

NATURAL convection in horizontal annuli has been
the subject of interest for the past 25 years and many
experimental, analytical and numerical papers have
appeared in the literature. In most of these studies,
isothermal cylinders were considered. The annulus
geometry has application in solar collector receiver,
thermal storage systems and transmission cables.

1t is clearly established from the flow visualization
study of Bishop and Carley [1] that there are two basic
types of natural convection flow between horizontal
cylinders ; the crescent-shaped eddy pattern for small
diameter ratios and the kidney-shaped eddy pattern
for diameter ratios greater than 3.6. This work was
extended by Powe ef al. [2] and a chart was presented
which allowed prediction of the type of unsteady flow
that would occur for a wide range of cylinder com-
binations and annulus operating conditions. Grigull
and Hauf [3] presented the results of a study similar
to the one reported in ref. [1]. They observed three-
dimensional flows which were not reported by ref. [1]
although both investigations used the same range of
variables. The conflicting results of refs. [1, 3] and
Liu et al. [4] are discussed by Bishop et al. [5] who
presented detailed quantitative information con-
cerning the characteristics of a natural convective
oscillatory flow between horizontal isothermal cyl-
inders. The results of a numerical investigation ob-
tained by Powe et al. [6] predicted a counter-rotating
cell for small diameter ratios as seen by ref. {2] but
the predicted fransition to oscillatory flow was
somewhat different from that given by ref. [2]. In
general, the experimentally determined transition seg-
ments obtained by ref. [2] were confirmed by their
numerical work [6]. Mack and Bishop [7] solved the
equations for low Rayleigh numbers by using the first
three terms in a power series of Rayleigh number
based on inner radius. They predicted secondary cells

in the top and the bottom of the annulus for very
low Prandtl numbers which was later confirmed by
Charrier-Moijtabi et af. {8]. Mahony ef al. [9] showed
numerically the effects of variable property and dia-
meter ratio on the heat transfer and fluid flow in the
horizontal annulus. Kuehn and Goldstein [10, 11]
determined experimentally and numerically the heat
transfer results up to a Rayleigh number of 10°. Kuehn
and Goldstein [12] also presented a correlation equa-
tion that improved upon previously published results.
Different numerical schemes were utilized to solve
the problem in concentric cylinders by Crawford and
Lemiich [13], Projahn ef al. [14], and Cho et al. {15].
The above-mentioned papers were confined to steady-
state analysis of flow between horizontal isothermal
cylinders.

A realistic problem of heat dissipation in trans-
mission cables is to cool the outside surface of the
cable with a coolant such as water. The inner surface
has a uniform heat flux and the outer surface is iso-
thermally cooled. The heat transfer results for this
problem were determined experimentally by Van de
Sande and Hamer [16] for Ra, > 2 x 10° for both
concentric and eccentric cylinders. Constant heat flux
on the inner wall was considered by Keyhani et al.
[17] and Prasad [18] for the vertical annulus. The
former reported experimental results in non-porous
media and the latter obtained numerical results in
porous media. Morgan [19] presented correlation
equations based on the experimental data of Dyer [20]
who studied heat transfer from a cylinder heated by
the application of a constant heat flux in an infinite
medium.

This paper presents the numerical results of steady,
natural convection flow of gases between two hori-
zontal cylinders with the inner wall maintained at
constant heat flux. The cylinders are long and the flow
is assumed to have axially independent properties.
The flow also has vertical lines of symmetry at the top
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T
NOMENCLATURE |
cp specific heat at constant pressure V&  dimensional radial velocity
ep unit vector in the radial direction ¥,  dimensional tangential velocity.
€y unit vector in the tangential direction
F body force
- . . Greek symbols
g acceleration due to gravity e
J, . o thermal diffusivity
h average heat transfer coefficient P fhicient of vol i .
k thermal conductivity of the fluid ’ coerhicient of volumetric expansion
. ¢ vorticity
L gap width, r,—r, 0 ) lar dinate - 4 "
Nu, Nusselt number. ALk angular coordinate ; measurcd positive
clockwise from the upper vertical line !
P pressure f symmetr
Pr Prandtl number, v/a . ;)a dius rati y -
q constant heat flux applied on the inner x us Tatio, fo/r;
é vector potential
wall densit ]
r radial coordinate L ensiy. ‘
. . . . ) T dimensionless temperature,
R dimensionless radial coordinate, r/L (T— T)/(qL/k)
Raf  Rayleigh number, Bg{gl/k) L  fav v N treamu f; gc;ion
Ra,  Rayleigh number, Sg(AT)L? /oy | ‘
T dimensional temperature
AT temperature difference across the Subscripts
annulus; (7,— T,) for isothermal D, based on inner diameter
heating, and (7,,,,— T,) for constant flux i inner wall
heating 1 local quantity
u non-dimensional radial velocity, Vi L/ L based on gap width
v, Vy non-dimensional tangential velocity, m mean value on the inner wall
VoLja max maximum value
V velocity vector, V = Viyeg+ Vie, o outer wall.

and the bottom of the annulus. Comparisons are made
with isothermal heating. Dependence of peak and
mean temperatures on the diameter ratio is addressed.
The flow patterns for different diameter ratios are
discussed in detail.

2. PROBLEM FORMULATION

The governing equations for a steady laminar flow
with no heat generation, negligible viscous dissi-
pation, applying the Boussinesq approximation may
be written as follows:

continuity V-V =0 )

momentum  p(V' V)V = —Vp+F—uVx(VxV)
(2)
energy k(V-V)T = pc,(V-V)T (3)

where F is the body force given by
F = (—pgcosfer+pgsinle,). 4

The following equations relate velocity V to vorticity
{ and vector potential &

V=Vx¢
{=VxV. (3)

The axial component of € in two-dimensional flows is
the stream function and henceforth will be denoted

by . { is the axial component of vorticity. The dimen-
stonless quantities are

Vil Vil
W= ) U= -
x o
R = " _T-T,
A T (qLik)
Liky L’ -
Ra* = ﬁ_q_(g,w/__) et = ",_ (6)
av ¥

The final equations are written as
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In the above equations, u and v are written in terms
of ¥ using equations (5).

The boundary conditions on the walls are evaluated
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using no slip conditions for velocity, constant heat
flux on the inner wall, constant temperature on the
outer wall and no cross flow in the vertical line of
symmetry. The angular coordinate increases in the
clockwise direction, with 6 =0 at the top and 8 ==
at the bottom of the annulus. Mathematically, the
boundary conditions may be stated as

I3 ot Fisa'}
Rep er="b ¥=0 {=-%:
ro 7y
RSZ’ =0, =0, C_“”&—F
0=0m =0, =0, (=0 (10)
b ,TE, 69— E = Vs - V.

3. NUMERICAL PROCEDURE

The vorticity transport equation and the energy
equation were solved by the false transient alternating
direction implicit {ADI) method, and the stream func-
tion equation was solved by the successive over relax-
ation (SOR) method. Such a procedure was suc-
cessfully used by Mallinson and de Vahl Davis {21}
and Mahony et al. [9]. The specific derivation of the
ADI method was a variation of the one proposed by
Samarskii and Andreyev [22]. The first and second
derivatives in space were approximated by central
differences and the time derivatives by a first-order
difference. Derivatives at the boundaries were
approximated by a three-point forward or backward
differencing.

A uniform rx 8 grid of 18 x 31 was chosen for low
Rayleigh number conditions, and a semi-uniform grid
of 18 x 31, closely spaced near the walls and the ver-
tical boundaries, was chosen for more severe flow
conditions that occurred at high Rayleigh numbers.
For high diameter ratios, a 28 x 41 mesh was used. To
check for secondary cells, a mesh size of 28 x 51 was
used for selected cases. The solution was found to be
grid independent.

The following criterion was used to check con-
vergence at each nodal point:

1_¢new — ¢old ! <

~
I ¢HCW Imax

where ¢ is the primary variable being tested, the sub-
scripts ‘old” and ‘new’ are the previous and present
iterative values, respectively, and I' a prespecified con-
stant. This constant was set to 10~* for the semi-
uniform mesh and 107* for the uniform mesh, and
was frequently lowered to 107 to maintain the energy
balance to a specified tolerance.

The energy balance was maintained by checking if
the average heat transfer rates on the inner and outer
surfaces differed by less than 2%. The constant I in
equation (11) was made smaller if the difference was
higher than desired. The majority of the results con-
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verged to give less than 1% energy balance, and an
error of up to 3% was tolerated for high Ra*. For
k = 10, energy balance was compromised up to 5%
and the convergence at each nodal point was only
1072, So, only a few results for x = 10 appear in this
paper. The number of iterations needed for con-
vergence was dependent upon the choice of starting
condition. On average, the number ranged from 100
steps to 600 steps using the computer NAS/XL60.

Validation studies have already been performed by
Mahony et al. [9] by generating a solution that could
be directly compared with previously published
results. Results were compared with the experimental
results of Kuehn and Goldstein [10] and several other
numerical results and were found to be in excellent
agreement.

4. RESULTS

Natural convection of gases in the horizontal annu-
lus with the inner wall maintained at constant heat
flux and an isothermal outer wall has been studied
numerically. The results of heat transfer and fluid
motion have been presented using a Boussinesq
approximation for a wide range of Rayleigh numbers
extending from conduction up to a point where the
flow ceases to be steady, and diameter ratios of 1.2,
1.33, 1.5, 2.6, 5 and 10. Comparisons are made with
the case of an isothermal inner wall for the same
temperature difference based on mean inner wall tem-
perature and outer wall temperature. The maximum
inner wall temperature non-dimensionalized by the
mean temperature has been obtained for various
diameter ratios. The flow patterns at high Rayleigh
numbers at which transition to unsteady or three-
dimensional flow occurs are discussed. Thus, the
objective of this paper is to find the structure of the
flow and the thermal fields in the horizontal annulus
obtained for a constant uniform heat flux boundary
condition and their behavior with the change in dia-
meter ratios, The numerical results for isothermal
wall heating have been compared with experimental
results elsewhere [9].

4.1. Temperature field

The temperature distribution across the annulus
presented in Fig. 1 for Raf =3x10° and k = 2.6 is
similar qualitatively to the profile obtained for iso-
thermal inner wall heating {9] for the same Ra, and x
(comparisons of Rayleigh numbers for the two
boundary conditions will be discussed later). In the
plane of vertical symmetry, where there is no angular
velocity, the temperature continues to decrease slowly
in the core along the radial direction until the outer
boundary layer is reached where the temperature falls
off sharply once again. At 45°, a temperature inversion
appears in the middle of the annulus. The cold fluid
moving upward gets recirculated to the outer core
while slightly warming up. Such an inversion is also
seen at other angular positions. The fluid in the bot-
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FiG. [. Non-dimensional temperature profiles for x = 2.6 and Ra¥ = 3 x 10°. Angular positions are marked
on the profiles.

Tabie 1. Normalized temperature at R = (.1

To

T;

R Rat = 1 x 10° Ra} = 5x 10°

D 0" 45 90° I35 00 45 90° 135°
12 089 082 075 07

1.33 083 0.72 066 0.55
15 085 0.76 0.70 0.65

26 080 065 057 0.52 075 054 047 038
50 074 0.30

0.46 0.25

tom portion of the annulus is relatively stagnant and
stays colder. In both cases of constant heat flux and
isothermal heating there is a drop in temperature
within a short distance from the inner cylinder at
all @-locations. However, this drop in temperature is
sharper for the uniform heat flux condition producing
a much thinner boundary layer. Hence, the effective
sink temperature occurs closer to the inner wall, that
is, at about (r —r)/{(ro—r;) = 0.1 rather than 0.25 as
in isothermal heating. Table 1 lists the percentage
drop in temperature at one-tenth the annular width
at four angular locations. As x is increased to §, for
Rat = 10°, the sink temperature at (r—r)/
(ro—r) == 0.1 falls to 74% of the maximum tem-

perature, and the drop in temperature is sharper
reaching 56% at 6 = 45°. The fluid temperature at
(r—r)/(r,—r} = 0.1 continues to decrease along 8 to
41% of the maximum temperature at 135°. Thus, the
stratification is seen to be strong in the upper part
of the annulus at high diameter ratios and Rayleigh
numbers. As the diameter ratio is decreased, there is
relatively more activity in the bottom part of the annu-
lus and hence the temperature decreases to only 70%
of the wall value even at 135° for k =1.2. For a
given gap width, the Rayleigh number is increased by
increasing the heat flux on the inner wall. Hence.
as the Rayleigh number increases, the temperaturc
gradient increases, resulting in a sharper drop in tem-
perature occurring closer to the inner wall for the
same diameter ratio as is evident from Table 1.

The peak and mean temperatures on the uniform
heat flux wall are useful quantities in engineering
applications. The maximum temperature always
occurs at the top of the inner cylinder, as can be
expected, for all Rayleigh numbers and diameter
ratios (Fig. 2). The temperature decreases steadily
along the inner wall to the bottom line of symmetry.
For a diameter ratio of 1.2, at 6 = 180°, the tem-
perature decreases to approximately 40% of the
maximum temperature. However, as the diameter ratio
is increased, the temperature profile appears to be
much smoother and flatter. In each of the profiles, an
inflexion point develops. The slope, d7,/90 is also seen
to decrease at 2° and the inflexion point moves away
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from the top line of symmetry as the diameter ratio
increases, and the profile levels off earlier midway
between the top and the bottom of the inner wall.
Thus, the inner wall temperature is seen to be strongly
dependent on diameter ratio. As diameter ratios are
further increased, the temperatures are expected to be
nearly uniform on the inner wall as in isothermal
heating. Thus, the heat transfer rates will be nearly
the same for both isothermal and uniform heat flux
boundary conditions at high diameter ratios for a
given Rayleigh number.

The ratio of the maximum to the mean tem-
peratures on the inner wall given in Table 2 confirms
the arguments given above. As pointed out earlier, the
mean temperature approaches the maximum value as
the diameter ratio increases; however, this approach
is faster for lower Rayleigh numbers. That is, when
the diameter ratio is large for low Rayleigh numbers,
due to low velocities, the temperature on a large por-
tion of the inner wall remains constant. For all diam-
eter ratios, the maximum temperature on the inner
wall stays below twice its mean temperature.

4.2. Heat transfer results
If a mean temperature T,,; is determined on the
inner wall, the heat transfer coefficient is given by

WTp;~T.) =q (12)

from which the average Nusselt number can be
defined as

Table 2. Normalized maximum temperature

Ra}
D, /D, 10 5% 10 10° Sx10°
5.0 1.392 1.494 1.540 1.652
2.6 Tmax 1.395 1.500 1.552 1.681
1.5 T 1.628  1.658 1671 —
1.33 1.664 1.697 1.711 1.744
1.20 1.805 1.858 1.881 —

HMT 31:6-B
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1
Nu, = —
T

m

(13)

where 7,, is the non-dimensionalized mean tempera-
ture. The heat transfer results are presented in terms
of Nu, vs Ra} in Fig. 3 for various diameter ratios.
At very low Rayleigh numbers, the heat transfer rate
is due to conduction and the numerical results are
predicted to within 1% of the theoretical values of the
conduction heat transfer rate

(14)

As the diameter ratio increases from 1.2 to 10, the
flow regime is seen to extend. Beyond the conduction
regime, as the Rayleigh number increases, the heat
transfer rate increases for all diameter ratios. This
is consistent with the non-dimensional inner mean
temperature becoming smaller as the diameter ratio
gets larger, as discussed in the previous section. Since
7 is defined as © = (T—T,)/(gL/k), as the heat flux is
increased, Rayleigh number and dimensional tem-
perature increase ; however, the rate of increase of heat
flux is larger than that of the dimensional temperature
that t decreases with Rayleigh number. The rate of
increase of Nu, with Ra} depends slightly on the diam-
eter ratio. At high diameter ratios, the rate of increase
is slower. Since the curves beyond the pseudo-
conduction region are straight lines on log-log coor-
dinates, Nu, for each diameter ratio may be rep-
resented by an equation of the form Nu, = C Ra}”.
The values of C and » are dependent on the diameter
ratio and are given in Table 3. As the diameter ratio
is increased, the heat transfer rate must approach that
for a horizontal cylinder in an infinite atmosphere.
Based on the experimental data of Dyer [20] on Jami-
nar free convection on a cylinder with uniform heat
flux in an infinite atmosphere, Morgan [19] recom-

mended a correlation
Nup = O.SSRag;"’”. (15)

Although the range of Rayleigh numbers used by
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F1G. 2. Local temperature distribution on the inner cylinder for Ra} = 1 x 10° along the tangential direction.
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Table 3. Nu,_ = R(If” 20 —
IS C H
P — i - e Ra:_“os
1.2 0.194 .222 ;
1.33 0.213 0.222 r
1.5 0.240 0.222 - 10°
2.6 0.374 0.217 "
5.0 0.640 0.200
Ny,

0.921 0.189

Dyer [20] was beyond the range presented in this
paper, the extension of the present numerical results
for x = 10 predicted the heat transfer rate within 8%
of Morgan’s [19] correlation at Ra, = 2x 10*. Thus,
beyond x = 10, the single cylinder results may be uscd
to predict the heat transfer rate reasonably well. This
fact is also substantiated by the plot of Nu, vs x in
Fig. 4. Two observations can be made here. One is
that for different Ra¥, the curves are not linear. and
hence any kind of heat transfer correlation cannot
include a constant exponent of diameter ratio ; rather,
the exponent of Raf should be a function of x.
Secondly, the heat transfer rate reaches an asymptotic
value beyond a certain diameter ratio. Al Raj = 10°,
the curves appear to become flatter earlier. Such a
trend is also seen in Fig. 3 where Nu, vs Raf curves
come closer together for different x’s at high Raf. It
seems reasonable to conclude that for x = 15, the
annulus results may be replaced by single cylinder
results without loss of accuracy.
The local heat flux on the cold wall is given by

Gy ct

g PR et (16)

This dimensionless heat flux on the outer cylinder is
given for Raf= 10" and 5x10° in Fig. 5. A high
percentage of heat is rejected at the top of the outer
cylinder. As the radius ratio is decreased for the same
Ra?¥, the percentage of heat rejected close to the top
line of symmetry increases. The local heat flux is also
seen to increase with Rayleigh number.

4.3. Comparison of isothermal and heat flux boundary
conditions

In order to effectively compare the heat transfer
results of constant heat flux and isothermal boundary

W BN w00
L T T T
5 ¢
OA

1 1
! 2 3 4

H

1
k]

o
[+]

PN T
5 6 7 20
K

Fic. 4. Effeet of diameter ratio on mean Nusselt number.

conditions, realizing that the two cascs are distinet,
one could speak in terms of similar conditions (same
Ru, «, cte.) if

Ti "A To == T!I'L! - YI‘u { 17)

where (T,— T,) is the applied temperature diffcrence
for the isothermal casc and 7, is the mecan tem-
perature on the inner wall in the uniform heat flux
casc. The Rayleigh number, Ry, for the above con-
dition may be easily derived to yield

Ra}

Ra, =
"7 Nu,

{18}
It must be emphasized that such a comparison is pos-
sible only if the temperature difference and hence the
Rayleigh number in both cases are identical. Some
interesting results emerge in the heat transfer rate for
both cases as shown in Fig. 6. The Nusselt numbers
are equal in both cases in the conduction flow regime.
However, it is also seen that the flow regime gets
slightly extended for ali the diameter ratios in the heat
flux case. Beyond the pseudo-conduction region, an
increase in Ra, increases the heat transfer rates for
both types of heating, but the rate of increase is larger
{or the constant heat flux case. This is not surprising
since the temperature gradient was already seen to be
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Fi16. 5. Local heat flux on the outer cylinder.

0
ROL
FiG. 6. Comparison of heat transfer results for heat flux boundary condition (~---~ ) and isothermal
boundary condition (- ),
much higher for the constant heat flux boundary con- Nup = 0.55Raj>>* (heat flux) {192)
dition compared to isothermal heating. This behavior
is prominent for small ’s for example, for x = 1.2, Nup, = 0.48Raj;?®  (isothermal). (19b)

Nu, at 10* is 19% larger for the constant heat flux
case, but increases to 30% compared to the isothermal
caseat 3 x 10%. At Ra, = 10°, the percentage difference
in heat transfer drops from 19 to 10% when « is
increased from 1.2 to 5. However, the increase in
heat transfer rate for the constant heat flux condition
diminishes as the diameter ratio increases until x = 10
is reached when both types of heating show minor
changes in heat transfer results.

For x > 10, the heat transfer rates will be the same
for both types of heating, given by a singlé equation
Nuy, = C Ra}", provided AT =T7,;~1, Morgan’s
{19] correlations of experimental data for a horizontal
cylinder in an infinite medium for the two types of
heating based on the consideration AT = T,,;— 7T, in
the range 10° < Ra, < 4x 10° are

The present numerical results for ¥ = 10 in the range
covering the onset of motion to nearly Ra, =~ 2 x 1¢*
yield

Nup, = 0.622Raj>*®, (20)
Although constant C has a different value compared
to the correlation given in equations (19}, the
exponent ‘7’ attains a nearly constant value through-
out the laminar regime for both constant heat flux
and isothermal boundary conditions for high diam-
eter ratios. At Rap = 20000, the numerical results
predict the results given by equations (19) within 8%.
The percentage difference decreases at high Ra,, (10°-
4 x 10°) at which Dyer’s [20] data were obtained.
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F1G. 7. Isotherms (left) and velocity vectors (right) for x = 2.6: (a) Ra} = 6 x 10*; (b) Ra? = 1 x 10",

4.4. Flow field

Isotherms and velocity vectors are presented in Fig.
7(a) for a representative case of k=26 and
Ra} = 6 x 10* For clarity, a few points are omitted in
the computational domain for plotting purposes. The
bottom region is essentially stagnant with low vel-
ocities with the isotherms forming concentric circular
patterns. However, in the top half of the cylinder, the
fluid is recirculated making the outer layer warmer.
The transport of hot fluid to the outer cylinder is also
depicted by the isotherms. As the Rayleigh number
increases to 1 x 10° (Fig. 7(b)), the velocities increase,
the center of rotation moves toward the line of vertical
symmetry but stays in the middle of the gap width. The
isotherms exhibit an inversion, and the streamlines are
crescent-shaped eddies as observed by Bishop and
Carley [1]. A clearer picture of the flow emerges as the
dimensionless tangential velocity is plotted across the
annular width in Fig. 8 for k = 2.6 and different Ray-
leigh numbers. For low Raf, consistent with the low
temperature gradient near the inner cylinder, the vel-
ocity values are lower. As Ra} increases from 6 x 10*
to 3x10°, the velocity gradient increases near the
inner and outer cylinders, but the upward and down-
ward flow are still balanced equally about the center
of the gap width. As Ra}is further increased to 7 x 10°,
at (r—r,)/(r,—r;) > 0.1, the velocity tends to be small,
and is predominantly upward until (r—r)/
(r,—r;) = 0.7. This is because the center of rotation
has moved higher up towards the vertical line of sym-
metry. The flow behavior at Rae¥ = 3 x 10¢ will be
discussed later.

The tangential velocity profiles for the heat flux and
isothermal heating in Figs. 9(a) and (b) at
Ra, = 5x10* once again reveal the large velocity
gradient close to the inner wall for the heat flux case
due to the large temperature gradient. In both cases,
the velocity attains a peak at 45°, and the profiles are
similar at all angles, in the upper half of the annulus,
in general. Although it is not appropriate to compare
the actual velocities for the two cases at different pos-
itions in the annular width, the ratio of velocities may

be considered for comparison of the two cases. At
135°, the peak velocity is only half the peak velocity
at 90° for isothermal heating whereas it is two-thirds
for the heat flux case. The profile at 135° also seems
to be more symmetric about the center of the gap
width for the present case. Between 0.2 < (r—r))/
(r,—r;) < 0.8, the velocities at all angles are nearly
the same in Fig. 9(a). Thus, the flow is seen to be more
active in the bottom portion of the annulus for a
uniform heat flux inner boundary for the same annu-
lus conditions.

It is confirmed by Bishop and Carley [1], Powe et
al. [2, 6] that a secondary cell forms near the top of
the annulus for small diameter ratios. Multiple cells
were seen to occur for D;/L > 8. In order to trace
secondary cells in the present numerical work, a finer
grid of 28 x 51 (r x f)) was chosen. The appearance of
the secondary cell for k = 1.2 at Raf = 5x10° was
monitored by a change in value of the stream function.
This value was too small and could appear only as a
faint line as shown by Powe et al. [6] in their numerical
study. The objective of this work is not to predict
the transition segments for the heat flux boundary
condition, and such an experiment was undertaken
mainly to validate our numerical results. As Torrance
[23] pointed out, the truncation error inherent in any
numerical study would lead to spurious instabilities.
However, in light of the excellent agreement of our
numerical results [9] with the experimental data of ref.
[10], no spurious instability is seen to have contributed
to any erroneous flow pattern. A series of vector plots
are presented in Figs. 10(a)—(f) for Rayleigh numbers
near but slightly below transition, and x = 1.5, 2.6
and 5.0.

The Rayleigh numbers above which the numerical
results failed to converge are given in Table 4. Since
the equations are written for a two-dimensional steady
flow with a vertical line of symmetry, it is very difficult
to judge whether the flow will become oscillatory or
three-dimensional beyond a certain Rayleigh number
given in Table 4 for a given inverse gap width, D;/L.
However, some interesting flow patterns are obtained,
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FiG. 8. Non-dimensiona) tangential velocity profiles for x = 2.6 at § = 90°. Ra} are marked on the profiles.

some of which were seen in photographic studies
earlier [1] for isothermal cylinders.

The crescent-shaped eddy pattern is seen in Fig.
10(a) just below transition for D;/L = 4. It stays cres-
cent throughout the steady flow regime and the center
of rotation does not move up high enough in order to
provide room for secondary cells that probably will
emerge at higher Raf. The flow behaved similarly for
all x < 1.8. Powe et al. [6] in their numerical work
concentrated on multiple cells and hence they limited
their study to k < 1.72. Above this diameter ratio, as
shown in Fig. 10(d), for x = 2.6, the center of rotation
moves closer to the line of symmetry. Nearly two-
thirds of the annular width is occupied by slow upflow
and the flow is strong and downward close to the
outer cylinder. As the Rayleigh number is increased
from 5x10° to 3 x 10°, following Figs. 7(b), 10(c)
and (d), the center of rotation approaches the outer
cylinder while moving towards the line of symmetry.
At Ra} = 3x10° (Fig. 10(d)), in the region around
8 = 90°, the flow turns towards the inner cylinder, and

Table 4. Critical Rayleigh number

D, /D, D,/L Ratt
5 0.5 1.3x107
2.6 1.25 3x10°
1.5 4 3Ix10°
1.33 6 5x10°
12 10 2x10°

T Rayleigh number beyond which the solution
did not converge.

the flow is upward and downward alternately along
the radial line as seen in the tangential velocity plot
of Fig. 8 for the same Rayleigh number. The effect of
higher diameter ratio on the flow pattern is seen in
Figs. 10(e) and (f). Once again, the center of rotation
moves up and towards the outer cylinder as Ra¥ is
increased. But, the crescent-shaped eddy transforms
into a clear kidney-shaped pattern in Fig. 10(d) for
K = 2.6, as seen in the photographic studies of Bishop
and Carley [1] between isothermal cylinders for
K = 3.67. Adjacent to the kidney-shaped eddy, the
flow bends towards the inner cylinder before moving
upward again as in x = 2.6. Comparing Figs. 10(d)
and (f) at high Ra}, there is a larger body of relatively
stagnant fluid at the bottom of the annulus as «
increases from 2.6 to 5.0.

5. CONCLUSIONS

This paper reports the numerical results obtained
for a natural convective flow of gases between two
horizontal cylinders, with the inner wall maintained
at constant heat flux and an isothermal outer wall.
The heat transfer and fluid flow results are presented
for diameter ratios of 1.2, 1.33, 1.5, 2.6, 5.0 and 10
and 100 < Ra? < 107. Wherever possible, results were
compared with the results obtained for flow between
two isothermal cylinders, when the temperature
differences in both cases were the same. Based on the
heat transfer, temperature and velocity profiles and
velocity vector plots, the following conclusions may
be made.
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Fig. 9. Comparison of non-dimensional tangential velocity profiles for x =26 at Re, = 5Sx 10%
(2} constant heat flux boundary conditions; (b} constant lemperature boundary condition.

(1) The constant heat flux on the inner cylinder
results in a lower effective sink ternperature compared
with isothermal heating.

{2} The inner wall temperature is strongly depen-
dent on the diameter ratio. The ratio of peak tem-
perature to the mean temperature increases with Ray-
Jeigh number but has the opposite effect on diameter
ratio. Also, as the diameter ratio increases, for the
same Rayleigh number, the effective sink temperature
becomes smaller.

(3) In the convection-dominated region, Nu, can
be represented by an equation of the form Ny, =
C Ra?”. The values of € and » are the diameter
ratio.

(4} For a diameter ratio of 10, the heat transfer
results predicted Morgan's {19} correlation for a single
cylinder with a uniform heat flux boundary condition
within 8% for Ra, = 2x 10% showing that for large
diameter ratios, free cylinder heat transfer coefficients
are approached monotonically.
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(5) Heat transfer rate is higher for the constant
heat flux case than isothermal heating when the tem-
perature difference is the same in both cases. The
percentage difference in heat transfer diminishes with
increase in diameter ratio.

{6) Most of the heat is rejected within 20° from the
top line of symmetry on the outer cylinder for small
diameter ratios. The heat rejection becomes more uni-
form around the outer cylinder as the diameter ratio
increases.

(7) A crescent-shaped eddy dominates the flow in
the case of small diameter ratios. For a diameter ratio
of 5, a kidney-shaped pattern forms as observed
between isothermal cylinders by Bishop and Carley
[1] who performed a flow visualization study between
isothermal cylinders at k = 3.67. The flow is faster
near the outer cylinder and more active in the bottom
portion of the annulus compared to isothermal heat-
ing at the same Ravleigh number. At high Rayleigh
numbers, as the diameter ratio is increased, there is
more stagnant fluid at the bottom with the inception
of a kidney-shaped flow pattern.
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ETUDE DE LA CONVECTION NATURELLE DANS UN ESPACE ANNULAIRE
HORIZONTAL

Résumé—On étudie numeériquement la convection naturelle des gaz dans un espace annulaire horizontal
dont le cylindre intérieur est chauffé par un flux constant et le cylindre externe refroidi isothermiquement.
On présente des résultats détaillés sur la température, la vitesse et le transfert de chaleur, pour un large
domaine du nombre de Rayleigh allant depuis la conduction jusqu'au régime de convection et pour des
rapports de diamétre de 1,2 4 10. Un tourbillon de forme croissante domine pour un petit rapport de
diamétre, et une configuration d’écoulement en rognon apparait pour un grand rapport, comme observé
par des chercheurs antérieurs dans leurs travaux de visualisation. La température de la paroi intéricure est
une fonction du rapport de diamstre et du nombre de Rayleigh. Une croissance du nombre de Rayleigh
basé sur la méme différence de température, pour la condition de flux de chaleur constant ou de température
uniforme sur le cylindre intérieur, augmente le transfert thermique ; néanmoins, Paccroissement est plus
grand pour le cas du flux de chaleur constant. Aux grands rapports de diamétre (x > 10), les taux de
transfert thermique sont les mémes pour les deux types de chauffage et un cylindre unique dans une
atmosphére infinie donne a peu prés les mémes résultats.

UNTERSUCHUNG DER NATURLICHEN KONVEKTION IN WAAGERECHTEN
RINGRAUMEN

Zusammenfassung—Die natiirliche Konvektion von Gasen in einem waagerechten Ringraum, bei dem der
innere Zylinder mit einem konstanten Wirmestrom beheizt und der duBere Zylinder bei konstanter
Temperatur gekiihlt wird, wird numerisch untersucht. Detaillierte Ergebnisse beziiglich Temperatur, Ge-
schwindigkeit und Wirmeiibergang werden fiber einen weiten Bereich der Rayleigh-Zahl dargestellt, vom
Gebiet der reinen Wirmeleitung bis hin zur stationdren Konvektionsstrémung. Das Durchmesserverhiltnis
betrigt zwischen 1,2 und 10. Bei kleinen Durchmesserverhiltnissen treten vor allem halbmondférmige
Wirbel auf, wihrend bei groBlen Durchmesserverhéltnissen nierenfOrmige Strémungsformen auftreten, wie
sie auch von anderen Autoren durch Sichtbarmachen der Strémung beobachtet wurden. Die Temperatur
des Innenrohres hingt vom Durchmesserverhiltnis und von der Rayleigh-Zahl ab. Eine Erh6hung der
Rayleigh-Zahl, die anf dieselbe Temperaturdifferenz bezogen ist, erhéht den Wirmeiibergang sowoh! fiir
die innere Randbedingung konstanter Temperatur als auch bei konstanter Warmestromdichte, bei letzterem
Fall ist die Verbesserung allerdings grofer. Bei groBeren Durchmesserverhiltnissen (x> 10) ist der
Wirmeiibergang bei beiden Randbedingungen gleich und erreicht fast den Wert eines einzelnen
Zylinders im unendlichen Raum.

WCCIENOBAHUE ECTECTBEHHO!M KOHBEKIIMH B FOPU30HTAJILHbBIX
KOJILHEBbIX KAHAJTAX

Annorauns—UHCACHHO M3YYAETCA €CTECTBEHHAS KOHBCKUMS Ta30B B TOPH3OHTAABHBIX KOJBUEBBIX
KaHa/ax, SHYTPEHHUNE LHJIMHAD KOTOPBIX HArpeBacTCs NOCTOSHHAIM TENOBBIM NOTOKOM, 4 BHEIHUA—
u3oTEpMAYECKH oxnaxaaerca. [Ipeacrasnenst nogpoGHpie JaHHBIE O TEMOEPaType, CKOPOCTH H TEIUIO-
TEepeHoce A WIMPOKOro  AMana3soHa uuced Pones, OXBATHIBAIOWIEIO DEXHMMBI  YCTOHYHMBBIX
KOHAYKTHBHBIX B KOHBEKTHBHBIX TEYEHHN, H OTHOWeHHA muameTpos oT 1,2 zo 10. [To nannbiM susyans-
3aUMM TeueHHs, HONYYEHHbIM paHee APYTMMH ABTOPAMH, B CJIy4ae MAJILIX 3HAUYCHMA OTHOWCHHS AHA-
METpOB, NpeobiajaeT CepnoOBAAHBIA BUXPb, B TO BPEMs Kak npH OONbIUAX 3HAYEHMAX BO3HHKAET
KAPTHHA TeveHHd, HanoMuHatomas no dopme dacons. BHyTpeHHAs TemnepaTtypa CTCHKH SBJIAETCH
(yHKUHeH OTHOIIEHHA IMAMETPOB M uMcia Panes. Venmvenue uncia Panes, ocHOBaHHOE HA OJZHOW U
TO# %e PasHOCTH TEMIEPATYp AJs FPAHMYHOTO YCIOBHS JUIS BHYTPEHHER CTEHKH C TIOCTOSHHBIM TEILIO-
BBIM TIOTOKOM WMJIH NOCTOSHHON TeMIepaTypoii, MHTEHCHPHUMPYET TENIONEPEHOC, NIPHYEM HHTEHCHGN-
Kallis CWIbHEe NPH MOCTOSHHOM TEIUIOBOM NOTOKe. TIpH GONLIGAX OTHOLICHHAX AMaMETpoB (x = 10),
Tennoo6MeH OIMHAKOB s OBOMX THIOB HArpesa, a Cllyda#f CAMHHYHOTO HHNTHHIpPA B GeckOHEYHON
cpene AAeT MOYTH TAKue Ke Pe3yIRTATHL



